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The accuracy of the linear Cahn-Hilliard-Cook (CHC) theory in matrix form (multicomponent 
description) is scrutinized by comparing its exact macroscopic derivation with its phenomenological 
derivation based on the linear Markov process assumption. The effect of the coupling of density modes to 
those which are not directly observed is examined. The influence of the initial state on the accuracy of the 
CHC theory is discussed. Interpretation of scattering experiments using a bimodal description of transients 
is presented in detail. As an application, the possible effect of coupling to viscoelastic modes on transients is 
analysed. © 1997 Elsevier Science Ltd. 

(Keywords: Cahn-Hilliard-Cook theory; spinodal decomposition; mode coupling) 

Introduction 
Because of  their remarkable physical properties, 

multicomponent polymer systems have been the subject 
of numerous experimental and theoretical studies in 
recent years I . The early stages of  transients following an 
initial perturbation in such systems is studied in terms of  
the Cahn-Hil l iard2-Cook 3 (CHC) theory in matrix 
form. The matrix form is also used in multimodal 
description of  transients, in which the coupling between 
the density modes and others, such as the viscoelastic 
modes, is taken into account explicitly. The purpose of  
this short paper is to discuss the structure and validity of  
the matrix formulation of  the CHC theory, and to 
comment on its application to the interpretation of  
scattering experiments. 

The transients after a perturbation in a mixture is 
monitored by measuring the scattering intensity I(q, t) of 
a selected spatial mode. The intensity is proportional 
to the variance of  the number-density fluctuations a(q, t) 
of the scattering centres in the Fourier space, i.e. I(q, t) = 
([a(q, t)12), where the symbol (. . .)  denotes the average 
over the initial perturbed distribution. In an incompres- 
sible binary mixture, a(q,t) is proportional to the 
composition variable or the order parameter. In an 
equilibrium state, I(q, t) is independent of  time, and 
equal to the static structure factor seq(q) -- (la(q)]2)eq. 
The relaxation of  l(q, t) from an initial intensity/in(q) 
after a perturbation to seq(q) in the final equilibrium 
state is commonly represented by the CHC expression 

I(t) = S eq q'- [/in _ seq ]  e-2At (1) 

where A = A(q) is the relaxation frequency of  the mode 
characterized by the wave number q. The explicit form of 
A(q) is not needed in the present discussion. In equation 
(1), and below, we suppress the q-dependence because 
the CHC theory, being a linear description, involves only 
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one spatial mode. The CHC form is obtained from the 
linear Langevin equation 4'5 for fluctuation in a(q, t), 
which assumes that these fluctuations can be treated as a 
linear Markov process. The same mathematical frame- 
work leading to equation (1) shows 4'5 that A(q) also 
describes the relaxation of  the normalized dynamic 
scattering function (or the time-displaced density- 
density correlation function) Leq(q,t) in the final 
equilibrium state 

(a(q, t)a(q, 0)*)eq (2) 
Leq(t) = seq(q) 

according to 
L e q ( t )  - -  e -At (3)  

Thus, the CHC expression can also be written as 

I ( t )  = S eq q-- [ / in  _ seq]teq(t)2 (4)  

The characteristic and appealing feature of  the CHC 
expression in this form is that it expresses the transients 
in the intensity following a perturbation, as a linear 
interpolation between the initial and final intensities with 
a time-dependent weighting function [L eq (t)] 2, which is a 
measurable equilibrium property. 

Microscopic basis of the CHC theory 
The extension of the CHC theory to multicomponent 

or to multimodal systems is implemented by introducing 
a state vector a(q,t) = column[al(q,t),  a2(q,t) , . . . ,  
an (q, t)] to represent the fluctuations in a set of dynamical 
variables aj(q, t), j = 1 , . . . ,  n, and defining the intensity 
matrix as I(q, t) -- (a(q, t )a( -q ,  t)T). The aj(q, t) may 
denote the number densities of the different species 
in a multicomponent mixture, or the other modes that 
may be coupled to them. In order to investigate the 
nature of approximations inherent in the CHC theory in 
matrix form, we provided a microscopic derivation 5 
of  I(q, t), using the Zwanzig6-Mori 7 projection operator 
formalism 

I(t) = S eq q- Leq(t)[I in - s e q ] t e q ( t )  T -+- R ( / )  (5)  
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where S eq = (a(q)a(-q)T)eq denotes the static structure 
matrix, and 

Leq( t )  = ( a ( q , t ) a ( _ q , 0 ) T ) e q S e q ( q )  I (6) 

denotes the normalized dynamic scattering matrix, both 
in the final equilibrium state. The Leq(t) satisfies the 
generalized Langevin equation s 7 

dLeq(t) j'~ 
dt - i~(q)Leq(t)  - dutll(q, t u)Leq(u) (7) 

0 

with the initial condition L~q(0)= I where ! is the 
identity matrix. In equation (7), fl(q) and O(q, t) are the 
usual frequency and memory matrices, respectively, in 
the projection operator formalism. Their microscopic 
equations are available s but not needed for our discus- 
sions. The R(t) in equation (5) represents the remainder 
of an expansion obtained by an iteration procedure 
explained in ref. 5. 

The important consequences of the microscopic 
derivation, which is exact, can be summarized as follows: 
(a) The first two terms in the expansion in equation (5) 
have the same structure as the conventional CHC 
expression in equation (4) in matrix form, representing 
an interpolation between the initial intensity matrix l 'n 
and the final equilibrium intensity matrix S eq through the 
time-dependent weighting function Leq(t). We therefore 
regard these two terms as the extension of the CHC 
theory to multicomponent mixtures. (b) The matrix R(t) 
in equation (5) represents the correction to the CHC 
expression, and accounts for the effect of nonlinearities 
on the time evolution of l(t). The contribution to the 
latter of the other dynamical variables that are not in the 
set a(t) are also included in R(t). Since the expansion in 
equation (5) is not a perturbation series involving a 
smallness parameter s, the neglect of R(t) to obtain the 
CHC expression cannot be regarded as linearization. 
because R(t) contains terms of the same order as those 
appearing in the CHC expression. Other arguments of 
statistical nature are needed to justify the neglect of R(t) 
(CHC-approximation). We intend to clarify these state- 
ments in this communication later in terms of a pheno- 
menological description. (c) The time evolution of the 
normalized dynamic scattering matrix Leq( t ) ,  is non- 
Markovian in nature because of the memory effects 
represented by the memory matrix in equation (7). To 
clarify this point, we consider the one-component 
description, in which equation (5) reduces to 

l(l) = S eq 4- [ / in  _ seq]Leq(t)2 4- R(l) (~) 

where Leq(t) satisfies the one dimensional form of 
equation (7). Contrary to the original CHC expression 
in equation (4), Leq(t) is not an exponential function of 
time in general. This non-Markovian behaviour of Leq(t) 
is a consequence of the memory term in equation (7). The 
memory effects for a given set of dynamical variables 
appear both in the time evolution of Leq( / )  and in the 
remainder R(t). (d) In order to quantitatively assess the 
validity of neglecting the remainder R(t) in equation (5) 
in obtaining the CHC form, one has to resort to a 
nonlinear microscopic description that takes into 
account the nonlinearities explicitly, such as the one 
introduced by Kawasaki 8 some time ago by augmenting 
the set of variables {a/} by adding their products aiak, 
ajaka, , , . . . ,  to the state vector. In the microscopic 
description, which is based on the generalized Langevin 

equation for the set {aj}, the effect of nonlinearities 
are hidden in the random force. A detailed description of 
the nonlinear theory is beyond the purpose of this 
communication. Here, we only wish to compare the 
microscopic description to the more familiar phenom- 
enological linear theory based on the Markov assump- 
tion, in order to elucidate the nature of approximations 
inherent in the CHC theory by obtaining an expression 
of the correction term R(t) in equation (8). 

Linear Markov description 
When the fluctuations in a set of variables a(t) can be 

approximately described as linear vector Markov pro- 
cesses, the variance matrix of a(t) satisfies s'9'l° 

l(t) = S eq 4- Leq(t)[l in - seq]Leq(t) T (9) 

where L~q(t) is given by 

Leq( t )  : e -At (10a) 

and denotes as before the dynamic scattering matrix in 
the final equilibrium state 5. The relaxation matrix A(q) 
can be obtained either from the Markov limit of equation 
(7) within the framework of the microscopic theory as 

I; A(q) = in (q)  - d tO(q ,  t) (10b) 

or directly from the phenomenological linear Langevin 
equation for a(q, t) in terms of the chemical potential and 
the q-dependent Onsager coefficient 4. The expression of 
A(q) in equation (10b) can be considered as the micro- 
scopic definition of the q-dependent Onsager coefficients. 
A comparison of equations (5) and (9) shows that (a) the 
remainder R(t) is zero in the linear Markov process 
approximation, (b) Leq(t) in equation (9) is expressible in 
terms of exponential functions with relaxation fre- 
quencies that are the eigenvatues of the relaxation 
matrix A(q), and (c) the correction term R(t) in equation 
(5) accounts for the effect of nonlinearities, as well as the 
memory effects arising from the non-Markovian evolu- 
tion of the variables a(t). These effects are not included in 
the linear Markov description. 

In order to further elucidate the origin of the correc- 
tion term in equation (5), we again consider its one- 
component version given in equation (8). We then 
calculate, using vector Markov description in equation 
(9), the scattering intensity l ( t )  = (lat (q, t) l 2) of thef irst  
component al(t), assuming that it is the only visible 
component among the dynamical variables a(t). By 
considering the first diagonal elements of both sides in 
equation (9), we obtain an alternative equation for I(t)  

[ ( t )  - -  S eq 4- j i m  _ seq]seq(t)2 4- R(I) (]  1) 

where 1 in -- ili"]ll, S ~q = [seq]11, and s e q ( t )  denotes the 
normalized dynamic scattering function of the visible 
component in the final equilibrium state 

seq(t) = (al(q' t)al(q'0)~)eq (12) 
(]al (q) ]2)eq 

It is to be noted that seq(t) is not equal to 

?eq{~.~ [e At]l I (13a) 

eq in general. The relation between s~q(t) and Ll l ( t  ) is 
obtained from the definition of L~q(t), i.e. 

s e q ( t )  = L e q ( t ) S  eq ( 1 3 b )  
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where seq(t) = (a(q, t )a( -q ,  0 )T)eq  is  the unnormalized 
dynamic scattering matrix [see equation (6)]. Calculating 
the 1-1 element of  both sides of  equation (13b), we find 

n 

seq(t) = L~q(t) + Z L~q(t) S~q (14) 
j : 2  

We observe that s e a ( t ) =  L~q(t) holds only when the 
visible component al (t) is not statically coupled to the 
unobserved variables aj(t) f o r j  = 2 , . . . ,  n, i.e. when 

S~ q : 0 ,  for j >  1 (15) 

When this is not the case, the difference between seq(t) 2 
and L~q(t) 2 has to be included in the correction term R(t) 
in equation (11). For simplicity, we present R(t) only 
when equation (15) holds 

n 

eq in eq R(t) = 2 Z LU (t)Ijl Lll (t) 
j = 2  

eq in eq eq + Llj(t)[lj~ - Sjl ~ ]Llk(t ) (16) 
j ,k=2 

This equation shows explicitly the terms left out in the 
CHC theory by neglecting R(t) in equation (11). 
However, the effect of  nonlinearities is not included in 
equation (16), because R(t) is obtained starting from 
the linear Markov description of  the full set of  variables. 
We first observe in equation (16) that the correction 
term involves possible initial coup!ing between the visible 
and unobserved components /j~n, j # I, as well as 
the. initial coupling among the unobserved components 
/j~n, j ,  k # 1. Depending on the way t.he initial perturbed 
state is produced in an experiment,/j]" may be zero, i.e. 
the visible component is not statically coupled to the 
unobserved variables in the initial state, as well as in the 
final equilibrium state. Even under this favourable 
condition, R(t) reduces to 

~ ' ~  eq in eq eq R(t) = z...a S~ ]Llk(t ) (lV) Llj (t)[l;~c " 
j ,k=2 

This residual correction involves the static coupling/j~n 
eq • and S.. , j ,  k # 1, among the unobserved variables. Even jr 

when the latter variables happen to be orthogonal to each 
other both in the initial and final states, i.e. when/j~n = 0 
and Sj~ = 0 when j # k, there still remains 

n 

eq 2 in R(t) = Z Llj(t) [I~ - Sj~ q] (18) 
j = 2  

Since L~q(t) and s~q(t) can be of  the same order 
of  magnitude in equation (11), R(t) cannot be argued 
to be small as compared to the CHC terms. This 
observation confirms the general conclusion reached 
in the microscopic derivation that the CHC expression 
cannot be justified on the basis of  linearization argu- 
ment. However, the CHC approximation would be 
justified, at least asymptotically, if one could argue that 
the partial dynamic scattering functions L~(t) f o r j  # 1 
in equation (18) decay faster in time tha~ (.~eq(t).  The 
L~(t) for t > 0 denote the dynamic coupling between 
the observed and unobserved modes, because L~ q (0) = 0 

• eq - • J 
by virtue of  the fact that L (0) is diagonal. Hence, 
the correction term R(t) vanishes at all times when the 
visible component is not dynamically coupled to the 

unobserved variables. This happens when the non-dia- 
gonal elements A U of the relaxation matrix A are zero. 
Indeed, by differentiating L~q(t)= [e-At]u , we find 
Llq(t ) = eq -A11Lu(t ) when A U = 0  for j > l .  Since 

= 0, LT( t )=  0 at all times for j > 1. The con- 
clusion that R(t) = 0 when L~q(t) --- 0 is true more gen- 
erally, as can be seen from equation (16). 

We now return to equation (11), and focus our 
attention on s e q ( t ) =  [e-A/]ll, which is the normal- 
ized dynamic scattering function in equilibrium of the 
visible component when the visible component is 
statically uncoupled from the unobserved variables. By 
expanding e -At into idempotents (i.e. spectral decom- 
position) one can express seq(t) as a weighted average of  
exponential function ll. Thus, ,seq(t) is non-exponential 
in general, as predicted in the microscopic theory (this 
result was differently interpreted in ref. 12). The non- 
exponential behaviour of  seq(t) is again due to the 
dynamic coupling between the visible and unobserved 
components. Indeed, in the absence of  this coupling, 
i.e. when A1j = 0 for j > 1, seq(t) is exponential: 
S eq ( t )  = exp(-A]l t). 

It follows from these discussions that, when the visible 
component is dynamically and statically uncoupled 
from the unobserved variables, the correction term 
R(t) vanishes at all times, and seq(t) becomes exponen- 
tial. This is expected because, in this case, the visible 
component al (t) alone is a linear Markov process, and 
hence I(t) is given by the one-dimensional CHC 
expression. 

Bimodal description 
In this section we discuss the implications of the above 

conclusions in the interpretation of  scattering experi- 
ments, in which the final state is an equilibrium state, e.g. 
a step temperature change in one phase region. We 
assume that the fluctuations in the density of  the labelled 
component, described by a(t), are coupled to a slow 
mode, which we denote by b(t) 13. In an incompressible 
binary mixture of  two species, a(t) is proportional to 
composition fluctuations, and the second component 
may represent the viscoelastic mode in the mixture. The 
i n t e n s i t y  Iaa(t ) = ([a(t)[ 2) is measured as a function of  
time for various values of  q. The question we wish to 
answer is: how can we interpret these data, and what can 
we learn about the system from this interpretation? 

The interpretation starts with equation (9) with the 
assumption that the fluctuations in the variable a(t) and 
b (t) can be jointly treated as a linear M arkov process. We 
reproduce equation (9) in a more compact form 

A(t) = Leq(t)A(0)Leq(t) T (19a) 

where 

A(t) = I(t) - S eq (19b) 

and A(0) = I in - S eq. The normalized scattering matrix 
Leq(t), which is defined in equation (10a), can be written 
as a linear superposition of  two exponentials. The 
coefficients can be easily obtained using Leq(0) = I and 
Leq(0) = - A  

1 
Leq(t) -- AI _ A2 [(A - A2 I) e -Art - (A - A l I  ) e -A2t] 

(20) 

The relaxation frequencies A1 and )k 2 a r e  the eigenvalues 
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of the 2 x 2 relaxation matrix A, i.e. the roots of A ~ - 
(Aaa + Abb)A + IAI = 0, where ]A[ = A~,Abb A~bAb,. 
In general, A is not symmetric. 

The measured intensity I~,.~U) = S~,~ ~ &~,,(t) is 
obtained from equation (19a) as 

~q 2 2&b(O)C,~,~(f)L~/t l  I aa ( / )  : Saea q + ~ a a ( 0 ) L a a ( / )  @ 

+ Abb(O)Le~(1) 2 (21)  

where all the quantities on the left are defined in terms 
of the elements Aaa, Aab, Aba, Abb, the initial intensities 
I~ n, I ~  =/~n, It{~, and the partial structure factors S.ea .q, 

eq _ eq eq Sab --.Sba, Sbb in the final equilibrium state. Thus, if 
I~ n, I~ ,  I~, were known from the initial preparation 
of the system, and eq eq eq Saa, Sa b, Sbb were independently 
calculated in the final equilibrium state, using, for 
example, the random phase approximation, then the 
matrix elements Aaa, Aab, Aba, Abb would be the unknown 
dynamic quantities to be extracted from the data. Since 
Leq(t) is expressed in equation (20) as the superposition 
of two exponentials, I~a(t) contains three exponentials 

laa(t)=Saeq+Ale-~' + A  2 - . A ~ e  ,.~. 

where the expressions of the prefactors A i, A2 and A 3 are 
too lengthy to be written down explicitly. Their calcula- 
tion, however, is straightforward. From l.~a(O), we have 
the following relation among them 

AI + A, + A 3 = / i n  ,~ _ ,,,, - S~. q (23a) 

If that initial slope )aa(0) of/aa(t),  can also be extracted 
from the data with sufficient accuracy, we have another 
relation 

/ aa (0 )  = -2AIA~ (AI + A2)A2 2A2A3 (23b) 

Equations (21), (22) and (23) are all what the bimodal 
description offers for the interpretation of  the data. By 
an appropriate curve-fitting procedure with the con- 
straints given in equations (23), one can determine .4j. 
A2, A 3 and Ai, A2 from the data, which can then be used 
to check a given physical model regarding the nature of 
the second mode. This procedure may be too ambitious, 
and lacks numerical accuracy required for the determi- 
nation of the parameters. The following simpler models 
may be justified depending on the initial conditions: 

(a) Both mab(0 ) = mba(0 ) and Z-~bb(0 ) vanish. This 
case corresponds to a situation in which the initial 
perturbation does not influence the second mode so that 
l a b ( 0 ) = I a ~ S a e ~  and Ibb(0 ) = l ~ S b  q. It may be 
realized when the system is prepared initially in an equi- 
librium state at an initial temperature Ti, so that I~IR = 

eq in eq Sab(Ti ) and I1~ b = Sbb(Ti) (step temperature changes 
within the homogeneous phase), and s~eq(Ti) ~ seq(T~ .) 

eq and Sbb (Ti) ~ Sbq(Tf). If the second mode represents the 
effect of the internal modes, these conditions may more 
likely be satisfied. Then, equation (21) reduces to 

eq [/aa(t>- s:# 1 Laa (t) : [ / a ~  -~ ~ J  (24) 

where 

eq ] Laa (t) - ~" AI - ~2 [(A.~ - .X2) e (A.~, Ai) e "~:' 

We recall that L~q(t)¢seq(t)/S,~ q, 

(25) 

unless the two 

components are uncoupled (or orthogonal) in the final 
eq equilibrium state, i.e. Sab = 0, as discussed above [see 

eq equations (14) and (15)]. When this is the case, Laa(t) 
becomes the normalized dynamic structure factor of the 
visible component in the final equilibrium, for which 
analytical expressions are often available by independent 
calculations. For example, the case, in which the second 
component represents the effect of the internal modes of 
chains, was discussed in detail in ref. 5. Muller et al.14 
showed recently that the observed deviation of Leq(t) 
from a single exponential is not due to the coupling of 
concentration fluctuations to the internal modes in the 
q-range considered in their experiments. 

As an alternative model, we propose that one in which 
the visible component is coupled to the viscoelastic 
modes ~5. In this model, the normalized dynamic scatter- 
ing function is represented by 16 

~,q. I 
L,alt) = A~----A2 i(~(q) -- A2)e A , t  (~(q) _ Ai)e &r] 

(26) 

where ~(q) = q:D~ denotes the first cumulant; 
,klA~ -- q'Dc/T,.; AI + A2 = q2Dg + T: j. In these defini- 
tions, D c --- Eo~/f denotes the collective diffusion coeffi- 
cient, whereas E0, and f are the osmotic modulus and 
friction coefficient" D° = (E0~ + Eo) / f  denote the pseudo 
gel diffusion coefficient 17is, where Eg is the longitudinal 
bulk modulus; 7'.- is taken to be the characteristic life- 
time of the entanglements in the transient network ~7'~s 
In this model the viscoelastic mode is approximated by 
q(t) = E g e x p ( t / T r )  2. In the absence of the coupling, i.e. 
when Eg = 0, A 1 = q D c and, although irrelevant in this 
case. A2 = T~ ~. We note that in general AI and A2 cannot 
be identified as the collective diffusion coefficient and the 
viscoelastic relaxation frequency, because of  the coupling 
between these two modes. 

The analytical results presented in this article are also 
applicable to the early stages of spinodal decomposition, 
provided the final equilibrium state S ~q is interpreted as 
the virtual equilibrium state 5~9. The latter is the analytic 
continuation of S eq obtained by evaluating S eq at the 
final temperature ~9. In the case of bimodal description 
with coupling to viscoelastic mode, the collective 
diffusion coefficient Dc(q) becomes negative when 

Laa ( / )  q < qc in the spinodal region. This implies that eq 
consists of one growing exponential (Xl < 0), and one 
decaying one because A 2 > 0 always holds even when 
Ai < 0. In conclusion, equations (24) and (26) may be 
used to interpret experimental data when coupling to 
viscoelastic modes is expected to be important in a 
polymer mixture. 

( b )  / \ a b ( 0 ) =  A b a ( 0  ) = 0. This is a less restrictive 
case in which the two components are statically 
uncoupled both in the initial and final equilibrium 
state, i.e. S,~ 0 and I~  = 0, and hence A,b(0 ) = 0. 

eq But Abb(0 ) = l~g -- Sbb = 0 is not assumed, so that the 
initial perturbation is allowed to affect the unobserved 
variable. In this case, the measured intensity follows 
from equation (21) as 

eq 2 l,~(t) = Sa'~ q + Aaa(0)Laa (t) + A b b ( 0 ) L 2 q ( / )  2 (27) 

The last term arises from the dynamic coupling between 
the two modes, as discussed above. It represents the 
relaxation of the initial perturbation m b b ( 0  ) eq = S b b ( r ~ )  - eq Sbb (Tr) which is due to the change in the static structure 

4566 POLYMER Volume 38 Number17 1997 



CHC theory in multicomponent polymer systems: A. Z. Akcasu 

factor of  the second component from the initial to final 
temperature during the step change. The expression of  

eq Lab (t) for t > 0 follows from equation (20) as 

eq Aab [e-A~/ 
Lab(t) -- A1 ~ 2  -- e-'x2t] (28) 

As stated previously, the dynamic coupling between the 
modes is accounted for by Aab. Indeed, when the latter 

eq vanishes, Lab(t ) = 0 at all times. The first term in 
equation (27) represents the decay of  the initial 
perturbation Aa~(0 ) = Saeq(Ti)- S~aq(Tf) in the visible 
component,  In the absence of  the dynamic coupling, 
equation (27) reduces to equation (24), with 

eq e - A a j  Laa(t ) = 

instead of  equation (25). This is because the eigenvalues 
of A are A1 = Aaa and A2 = Abb when it is diagonal, and 
the last term in equation (25) vanishes, i.e. the visible 
component is itself a Markov process. 

Conclusions 
In this paper, we have discussed the structure and the 

validity of  the CHC expression in matrix form. We have 
shown that CHC expression becomes exact in matrix 
form when the time evolution of  the state vector can 
jointly be treated as a linear vector Markov process. 
Otherwise, it is approximate, and the correction term is 
due to nonlinearities, as well as to the memory effects 
representing the influence of  the unobserved variables on 
the time evolution of the observed variables. It is con- 
cluded that the validity of  the CHC theory is improved 
by including all the unobserved slowly varying variables 
that are coupled to the visible components, so that the 
augmented set can be treated as a linear vector Markov 
process. We have shown that the validity of  the CHC 
expression for a given set of  variables strongly depends 
on the preparation of  the initial state, and the degree 

of  static and dynamic coupling between observed and 
unobserved variables. We have presented the bimodal 
description in general, and analysed, as a possible model 
for polyme~ mixtures with entanglement, the special case 
in which the density is coupled to the viscoelastic mode in 
detail. 
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